3.1196 \(\int \frac{1}{\sqrt [4]{a-i a x} (a+i a x)^{7/4}} \, dx\)

Optimal. Leaf size=33 \[ \frac{2 i (a-i a x)^{3/4}}{3 a^2 (a+i a x)^{3/4}} \]

[Out]

(((2*I)/3)*(a - I*a*x)^(3/4))/(a^2*(a + I*a*x)^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.0034473, antiderivative size = 33, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.04, Rules used = {37} \[ \frac{2 i (a-i a x)^{3/4}}{3 a^2 (a+i a x)^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a - I*a*x)^(1/4)*(a + I*a*x)^(7/4)),x]

[Out]

(((2*I)/3)*(a - I*a*x)^(3/4))/(a^2*(a + I*a*x)^(3/4))

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt [4]{a-i a x} (a+i a x)^{7/4}} \, dx &=\frac{2 i (a-i a x)^{3/4}}{3 a^2 (a+i a x)^{3/4}}\\ \end{align*}

Mathematica [A]  time = 0.0106085, size = 33, normalized size = 1. \[ \frac{2 i (a-i a x)^{3/4}}{3 a^2 (a+i a x)^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a - I*a*x)^(1/4)*(a + I*a*x)^(7/4)),x]

[Out]

(((2*I)/3)*(a - I*a*x)^(3/4))/(a^2*(a + I*a*x)^(3/4))

________________________________________________________________________________________

Maple [A]  time = 0.03, size = 31, normalized size = 0.9 \begin{align*}{\frac{2\,x+2\,i}{3\,a} \left ( a \left ( 1+ix \right ) \right ) ^{-{\frac{3}{4}}}{\frac{1}{\sqrt [4]{-a \left ( -1+ix \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a-I*a*x)^(1/4)/(a+I*a*x)^(7/4),x)

[Out]

2/3/a/(a*(1+I*x))^(3/4)/(-a*(-1+I*x))^(1/4)*(x+I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (i \, a x + a\right )}^{\frac{7}{4}}{\left (-i \, a x + a\right )}^{\frac{1}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-I*a*x)^(1/4)/(a+I*a*x)^(7/4),x, algorithm="maxima")

[Out]

integrate(1/((I*a*x + a)^(7/4)*(-I*a*x + a)^(1/4)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.55673, size = 78, normalized size = 2.36 \begin{align*} \frac{2 \,{\left (i \, a x + a\right )}^{\frac{1}{4}}{\left (-i \, a x + a\right )}^{\frac{3}{4}}}{3 \,{\left (a^{3} x - i \, a^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-I*a*x)^(1/4)/(a+I*a*x)^(7/4),x, algorithm="fricas")

[Out]

2/3*(I*a*x + a)^(1/4)*(-I*a*x + a)^(3/4)/(a^3*x - I*a^3)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a \left (i x + 1\right )\right )^{\frac{7}{4}} \sqrt [4]{- a \left (i x - 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-I*a*x)**(1/4)/(a+I*a*x)**(7/4),x)

[Out]

Integral(1/((a*(I*x + 1))**(7/4)*(-a*(I*x - 1))**(1/4)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a-I*a*x)^(1/4)/(a+I*a*x)^(7/4),x, algorithm="giac")

[Out]

Exception raised: TypeError